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Efficient MPIE Approach for the Analysis of Three-
Dimensional Microstrip Structures in Layered Media
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Abstract— A full-wave space-domain method is presented
for the rigorous and fast investigation of printed circuit
structures of arbitrary shape on uniaxial anisotropic layered
substrates including three-dimensional (3-D) metallizations.
The electromagnetic (EM) fields are described in terms of a
mixed-potential-integral-equation (MPIE) formulation. Two
different techniques—the matrix pencil (MP) technique and a
cross-sectional eigenvalue (CSEV) approach—are employed to
extract the SSS-parameters of the circuit under consideration. The
usage of a triangular mesh allows the convenient modeling of
arbitrarily shaped structures. Therefore, the main advantage
of this method is its generality, which allows a large variety of
printed circuit structures to be characterized. The flexibility of
the method is demonstrated at the example of spiral inductors
including air-bridges with finite-metallization thickness.

I. INTRODUCTION

V ERTICAL interconnect elements in multilayered circuit
environments, such as air-bridges, via holes, or bond-

wires, play a significant role in recent microwave monolithic
integrated circuit (MMIC) technology [2], [10], [19], [21]. Up
to now, for the full-wave analysis of such three-dimensional
(3-D) structures, the spectral-domain-analysis (SDA) tech-
nique [2], the finite-difference time-domain (FDTD), finite-
element (FE) (e.g., [10], [21]), and mode-matching (MM)
methods [19] have been applied. Although very flexible,
the numerical FDTD or FE approaches require a significant
effort in central processing unit (CPU) time and storage
requirements. The extensive use of the fast Fourier transform
(FFT) algorithm makes the SDA technique very efficient, but
limits, on the other side, its application to structures with
identical segment sizes. The MM technique in [19] is restricted
to rectangular via holes. It may, therefore, be desirable to
dispose of adequate analysis and circuit design techniques for
3-D passive MMIC devices, which combine the advantage of
full flexibility with that of numerical efficiency.

In this paper, a flexible full-wave space-domain mixed-
potential-equation (MPIE) method is described for the rigorous
and fast investigation of printed circuit structures of arbitrary
shape on layered substrates including 3-D metallizations. Up
to now, for MMIC structures, the MPIE approach has been
used merely for planar two-dimensional (2-D) printed circuits
[9]. A triangular mesh allows the convenient modeling of
arbitrarily shaped structures without the assumption of specific
attachment basis functions. Although the usage of a wire model
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may be adequate for the modeling of vias, coax pins, and thin
bond wires, this approach would be inaccurate for air-bridges
used in MMIC devices.

The space-domain technique has already been successfully
applied at scattering problems [13]. The efficiency of the MPIE
formulation is demonstrated in [13] at the example of the
dielectric half-space where computationally efficient expres-
sions for the Sommerfeld-type integrals have been introduced.
In this paper, in order to maintain the full flexibility of the
space-domain method, no special assumptions are made.

The matrix pencil (MP) technique [7], [8] and a cross-
sectional eigenvalue (CSEV) approach are employed to extract
the -parameters of the circuit under consideration. By con-
trast with the MP technique, the CSEV approach turns out to
also yield accurate results for very short port-line lengths. The
efficiency of the presented method is demonstrated within the
example of spiral inductors including air-bridges (Fig. 1). For
the rectangular structure [Fig. 1(a)], the available reference
values in [2] for negligible metallization thickness of the air-
bridge are used to verify these results. Moreover, the authors’
FDTD calculations are carried out for reference purposes.
In contrast to [2], in this paper the air-bridges may include
finite-metallization thicknesses (Fig. 1).

II. THEORY

A. Formulation of the MPIE

The Green’s functions for the mixed potentials have already
been derived by Michalski and Zheng in [11]–[13]. Therefore,
only a short summary will be given here, concentrating mainly
on new aspects. For further details of the basic theory, the
reader is referred to the literature.

The boundary condition for the electric field on the
surface of the perfect metallic scatterer is

on (1)

is the unit normal vector of the scatterers surface. and
are the incident and scattered fields in complex notation.

The mixed-potential-integral equation (MPIE) is written as

(2)

using the vector potential

(3)
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(a)

(b)

Fig. 1. Spiral inductors in microstrip technique with an air-bridge of fi-
nite-metallization thickness. (a) Rectangular spiral and (b) continuous spi-
ral structures. Dimensions for the rectangular structure analogous to [2]:
a = s = 0:3125 mm, w = 0:625 mm, h = 0:3175 mm, d = 0:635

mm, �r = 9:8, tan � = 0. Here, t 6= 0.

and the scalar potential

(4)

where the surface–current density is related to the surface-
charge density by

(5)

and are dyadic and scalar Green’s functions for the
vector and scalar potential.

B. Green’s functions

The Green’s functions for the scalar and vector potential
may be derived from the Green’s function for the electric
field produced by an electric source. Because of the fact that
the relation between the Green’s functions for the electric field
and the mixed potentials is not unique, different formulations
are possible. Michalski and Zheng [11], [12] have discussed

in detail three formulations. Their formulation results in a
continuous function .

The derivation of in this paper is based on a formu-
lation by Felsen in [3]. This formulation relates the Green’s
functions for the fields to the transmission-line Green’s
functions, , , [3], and allows a high flexibility of
the MPIE technique. Since the equations in [3] are given
for source-free regions, an extension for source regions is
necessary.

To clarify some notations, the observation point residing
in the th layer is denoted by (, , ) and the source point
residing in the th layer is denoted by (, , ), respectively.
The generally uniaxial anisotropic layered medium of infinite
extend in the - and -directions is characterized by the
relative permittivity and permeability dyadics

(6)

(7)

for the th layer. Using the notation of Felsen in [3] for the
transmission-line Green’s functions, , ,1 one obtains for
the dyadic and scalar Green’s functions

(8)

(9)

with

(10)

Like formulation in [11], this results in a continuous
function , so that no additional contour integrals in the
space domain are needed. The definition of the Sommerfeld
integral , as well as the relations for the transmission-line
Green’s functions , , , are given in the Appendix.

1According to [3], the superscript00 denotesH-waves, and the superscript
0 denotesE-waves.
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Fig. 2. Real part of the surface–current distribution on the metallic surface
of the rectangular spiral inductor [Fig. 1(a)],t = 0:15625 mm,f = 11 GHz.
Also shown is the triangular mesh.

C. Method of Moments

For the solution of the MPIE, the method of moments
(MoM) with triangular patches (see Fig. 2) and a set of basis
functions as described in [17] are used. Additional attachment
basis functions near the attachment points of coax pins or wires
[22] preserve the continuity of the current at the junctions.

The ordinary basis function belonging to a common edge
of two triangles and is defined as

in

in

otherwise.

(11)

The are the areas of the triangles . The vectors
are defined as if is in , where the vectors
are the position vectors of the free vertices of the triangle pair.

The attachment basis function used here is thesimplified-
attachment basis functionpresented in [22]. Considering a
single attachment point, there are triangles connected
to it, where one of the vertices must be the attachment point.
If the three vertices of a triangle are denoted with, , and
, and their opposite edges with the vectors, , and , then

vertex shall be the attachment point. The angle between the
edges and is , the total angle is defined for each
attachment point as the sum of all its angles. Using this
notation, the first part of the attachment basis functions on the
attached triangles can be written as

(12)

with

in
otherwise

(13)

where is the position vector to the vertexof triangle ,
and is the area of triangle. On the attached wire segment,

the current is modeled with a semirooftop function with the
maximum on the attachment point. This is the second part of
the attachment basis function.

Introducing the approximation

(14)

for the surface–current density on, using Galerkin’s method,
and applying the 2-D divergence theorem, yields for theth
equation

(15)

where the potentials are defined as

(16)

and

(17)

The system matrix of the resulting linear system of equations
is called impedance matrix,the right-hand side (RHS) vector
is calledexcitationor voltagevector.

The first part of the simplified-attachment basis function,
which is defined on the attached triangles with a prescribed
amplitude, may be used as the source for the incident field

. This is a good choice for the excitation if scattering
parameters related to microstrip lines are computed.2 The
algebraic and the computational effort for the calculation of
the excitation vector is negligible as it is computed in the
same way as the impedance matrix. However, if scattering
parameters related to coaxial cables are of interest, the coax
pins should be included into the integral equation. In this case,
the magnetic-current frill excitation is an accurate source for
the incident field [22].

D. Extraction of the Scattering Parameters

For the determination of the scattering matrix of the-port
structure, the incident and reflected fundamental modes on the

microstrip lines must be known for different excitations.3

The resulting linear system of equations , where
and are matrices of the vectors and for the

different excitations is solved for the scattering matrix.
The fundamental modes and even higher order modes on the
microstrip lines are determined by utilization of the efficient
MP technique, which is discussed in detail in [7] and [8].

The MP technique is used advantageously for the estimation
of parameters of complex exponentials in noise. The efficiency
of the MP technique results, in particular, from the fact that an
eigenvalue problem can be formulated for the determination

2In this case, the attachment function is not a “basis” function in the original
sense and is not included in the set of theN basis functions.

3Here,N denotes the number of transmission lines.



1144 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 8, AUGUST 1997

(a)

(b)

Fig. 3. Comparison of two different methods, the MP technique and the CSEV approach, for the scattering parameter extractiont = 0. (a)S11, magnitude,
10-mm line length. (b)S11, phase, 10-mm line length.

of the signal poles. The sampled data sequence of length
is described by

(18)

where denotes the noise, the signal poles, and
. It can be shown [7] that the signal poles

can be estimated by the generalized eigenvalues of amatrix
pencil (MP)

(19)

where and are data matrices, as described in [7]. The
utilization of singular-value decomposition techniques leads
to a stable approximation of the matrix pencil, and the signal
poles are computed as its eigenvalues. If allare known, the
residues are obtained after a solution of an overdetermined
linear system of equations by a singular-value decomposition
in the least square sense.
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(c)

Fig. 3. (Continued.)Comparison of two different methods, the MP technique and the CSEV approach, for the scattering parameter extractiont = 0.
(c) S11, magnitude, 5-mm line length.

For the determination of the matrices and , the line
currents on the microstrip lines are sampled for each of the

excitations. From these line currents, all desired modes can
be extracted with the help of the MP technique.

A second technique is based on the CSEV’s. An adequate
technique for the analysis of the cross section problem of
transmission lines in multilayered media, like that described
in [6], may be used to compute the surface–current eigen-
modes. From these modes, the characteristic impedance of
the fundamental mode may be computed most easily us-
ing the voltage–current definition. The generally preferred
power–current definition requires the integration of the Poynt-
ing vector in the transversal cross section of the transmis-
sion line, where the integration over the horizontal variable

can be transformed into an integration over the corre-
sponding spectral wavenumber [16]. In this paper, the
voltage–current definition of the characteristic impedance has
been used.

It is also possible to use not only the characteristic
impedance of the eigenmodes but also the eigenvalues
and eigenmodes itself for the extraction of the scattering
parameters. The computed surface–current distribution on
the transmission lines of the investigated 3-D structure
may be expressed by a weighted sum of eigenmodes with
unknown amplitudes. The resulting equation, which relates the
eigenmode expansion of the surface current to the computed
surface current, is tested with the eigenmodes, and a linear
system of equations for the expansion coefficients is obtained.
These coefficients are used as described above to compute the
scattering parameters.

In the present context, only a single eigenmode (for each
direction) has been used in order to extract the scattering
parameters.

III. N UMERICAL IMPLEMENTATION

A. Treatment of Green’s Functions Static Parts

The static parts of the Green’s functions in the spectral
domain are the asymptotic terms for , where is the
spectral variable. In the space domain, the static parts are the
singular parts of Green’s functions. Therefore, the extraction
of the static parts from the Sommerfeld integral integrands
increases the convergence of the Sommerfeld integrals and
yields regular results in the space domain. The extracted static
parts in the spectral domain are transformed into the space
domain analytically by using the Sommerfeld identity

(20)

where is a path from 0 to , and the relation

(21)

which may be derived by integration by parts.
When source and observation points are located in the same

layer, the first three largest asymptotic terms are extracted in
the spectral domain. In the space domain, these three static
terms represent thedirectpart, and twoimagesat the upper and
lower interfaces. In this way, the Sommerfeld integrals yield
very smooth results in the space domain. When source and
observation points are located in different, but neighboring,
layers, only the largest asymptotic terms are extracted. In this
case, there are noimage terms. Thedirect and image parts
can be identified directly from the transmission-line Green’s
functions.
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(a)

(b)

Fig. 4. Magnitude and phase of theS-parameters of the structure of Fig. 1 fort = 0. Comparison with the SDA [2] and the authors’ FDTD calculations.
(a) S11, magnitude and (b)S11, phase.
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Dealing with and the diagonal elements of for the
calculation of the scalar and vector potentials, (16) and (17),
one to three static parts are integrated for the scalar potential,
and one up to three static parts are integrated (multiplied with
the basis function) for the diagonal elements of for the
vector potential using the equations developed in [20]. For the
nondiagonal elements of , the analytical expressions of the
extracted static parts are singular only at the interfaces between
the adjacent layers. Since the terms of the static parts multi-

plied with the basis functions cannot be integrated analytically,
the static parts are simply added to the nondiagonal regular
parts of in the space domain, and integrated numerically.
The singularity of the total nondiagonal elements of
poses no numerical difficulties, because the triangular seg-
ments are not allowed to cross the interface between adjacent
layers.

The treatment of the singularities in layered media is
similar to the treatment of singularities in free space,
the only difference is the appearance of additionalimage
terms.
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(a)

(b)

Fig. 5. Influence of the finite thicknesst of the air-bridge on the magnitude and phase of the scattering parameters. (a)S11, magnitude and (b)S21, magnitude.

B. Evaluation of the Sommerfeld Integrals

For the integration in the complex -plane along the real
axis only, Mosig [14], [15] has proposed some techniques for
the efficient numerical integration near the surface poles and
the branch cut. The pole-extraction technique would work well
for special applications, but in general, the number of poles is
not known, and, hence, the extraction of the poles is difficult
in this case.

Therefore, a different integration path (partially above the
real axis) has been chosen. The integral is computed along
0 to , to ,
and back to for the first in-
terval. This path works even if parallel-plate poles must be
considered.

For the subsequent real-axis integration up to infinity,
Mosig’s method of averages [14] is considered to be the
best choice. The convergence of this technique is very fast.
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(c)

(d)

Fig. 5. (Continued.)Influence of the finite thicknesst of the air-bridge on the magnitude and phase of the scattering parameters. (c)S22, magnitude
and (d) S11, phase.

A further improvement of the convergence rate is obtained
after the extraction of static parts, as discussed in Section
III-A.

C. Interpolation of Green’s Functions

Usual interpolation techniques (over) for planar scattering
problems are known to work very well. However, for this
paper’s 3-D scattering problem in layered media, a 3-D
interpolation (over , , and ) is required, and very smooth
functions are necessary. Fortunately, the Green’s functions

without the (extracted) static terms are sufficiently regular, and
only a few sampling points are necessary in the-direction.
Therefore, the memory and time requirements for this 3-D
interpolation are very low. A Lagrange interpolation of the
second degree has been used here.

D. Determination of the Linear System of Equations

The procedure for the computation of the impedance matrix
elements is based on the technique of [17]. The testing integral
is calculated using a one-point integration rule (i.e., one-point
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(e)

(f)

Fig. 5. (Continued.) Influence of the finite thicknesst of the air-bridge on the magnitude and phase of the scattering parameters. (e)S21, phase
and (f) S22, phase.

testing procedure) as a special case of a numerical low-
order integration. The error of the computed surface currents
obtained by this rather coarse approximation turned out to
be very small. Exceptions are microstrip antennas near a
resonance frequency, where a three-point test integration rule
may be used.

For the efficient computation of the impedance matrix
and excitation vector elements, an adequate preprocessing
technique is important after the generation of the triangular
mesh. Although the ordinary basis functions are assigned to

internal edges, it would not be efficient to utilize a nested
loop procedure for the observation and source-basis functions

and . An efficient algorithm, however, is obtained by
introducing the potentials

(22)

and

(23)

where denotes the vertices of a source trian-
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(a)

(b)

Fig. 6. Scattering parameters of the continuous spiral inductor of Fig. 1(b). Dimensions:a = 0:3125 mm, s = 0:15625 mm,w = 0:625 mm, h = 0:3175

mm, d = 0:635 mm, �r = 9:8, tan � = 0, t = 0. (a) Magnitudes and (b) Phases.

gle and by implementing the nested loop procedure for
the observation and source trianglesand . Ordinary and
attachment basis functions are handled in the same way due
to introducing appropriate arrays for the corresponding factors
and the parameter inherent in the definition of the different
basis functions for each triangle and vertex. The integrals are
then included in the impedance matrix and in the excitation
vector, if the first part of the attachment basis function is used
as the source of the incident field.

The introduction of normalized area coordinates, as in
[17], yields an effective procedure for the calculation of the
potentials (22) and (23). The resulting integrals may be used
for the different basis functions defined on the source triangle
.

V. RESULTS

In order to compare the results of the MPIE method pre-
sented in this paper with available measured data, the rect-
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angular microstrip spiral inductor with an air-bridge are first
chosen [Fig. 1(a)] according to Becks and Wolff [2] as a
design example. In contrast to [2], however, the flat strip
of the air-bridge may include a finite-metallization thickness
.

For the solution of the MPIE, the MoM with triangular
patches (Fig. 2) and basis functions as described in (11) are
used. Fig. 2 illustrates the real part of the surface current on
the metallic surface of the rectangular microstrip inductor for

GHz. For this example, the lengths of the transmission
lines on both sides of the spiral inductors are chosen to be
5 mm, measured from the reference planes (Fig. 1). The
imaginary part shows the same behavior for this frequency
and is, therefore, not displayed. The structure is excited at
port 1.

The results of the two different scattering-matrix extraction
techniques, i.e., the MP technique and the CSEV approach,
are compared with each other in Fig. 3. For this calculation,
the lengths of the transmission lines are first assumed to
be 10 mm [Fig. 3(a) and (b)]. Merely at a few frequency
points, the MP technique shows some small spikes which
depend on the number of considered signal poles and on
the number of sampling points. In general, the differences
between the two techniques are negligible. However, if the
lengths of the lines are reduced (to 5 mm, for example), more
significant differences may be perceived [Fig. 3(c)]. It turns
out that only the CSEV approach gives accurate results for
very short lines. For all following figures, the CSEV approach
has, therefore, been used for the extraction of the scattering
parameters.

Fig. 4(a) and (b) show the magnitude and phase of the
scattering parameter of the rectangular spiral inductor of
Fig. 1(a) for . Because of some differences to Becks
and Wolff [2] for the phases, the authors have used their own
FDTD reference calculations. Good agreement between the
MPIE calculations and the reference values may be stated.
The calculations have been carried out on an IBM RISC 6000
workstation.

In order to demonstrate the influence of a finite air-bridge
metallization thickness on the results, Fig. 5 presents the
magnitudes and phases of the scattering parameters of the rect-
angular spiral inductor [Fig. 1(a)] for different metallization
thicknesses. As may be stated, the thickness is of perceptible
influence on both the magnitude and phase.

The flexibility of the presented MPIE method is demon-
strated by the example of the continuous spiral inductor
structure Fig. 1(b). The corresponding scattering parameters
are shown in Fig. 6(a) and (b).

VI. CONCLUSION

The modified space-domain method described in this paper
is a powerful and flexible tool to calculate the full-wave
scattering parameters of arbitrary 3-D microstrip structures
on uniaxial anisotropic layered substrates, including the finite-
metallization thicknesses of air-bridges. The method involves
mutual coupling effects and losses due to radiation and surface
waves. The electromagnetic (EM) fields are described in terms

of a flexible MPIE formulation, and the efficient MP and
eigenvalue techniques, respectively, are employed to extract
the scattering parameters of the circuit under consideration.
A triangular mesh allows the convenient modeling of ar-
bitrarily shaped structures without special attachment basis
functions. Therefore, the main advantage of this method is
its generality, which allows a large variety of printed cir-
cuit structures to be characterized with high accuracy and
efficiency.

APPENDIX

A. Definition of the Sommerfeld Integral

(24)

where is a path from 0 to , as discussed in Section III-B.

B. Summary of Transmission-Line Green’s Functions

The characteristic admittance and impedance in Felsen’s
notation [3] are for -waves

(25)

and for -waves

(26)

with the vertical propagation constants

(27)

(28)

for - and -waves in the th layer.
The reflection coefficients for - and -waves4 in

forward and backward direction are

(29)

in the th layer. The are the terminal admittances at the
lower and upper interfaces in theth layer, corresponding to the

4For convenience, the corresponding distinguishing superscripts,0 and 00

(cf. Section II-B), are omitted in the remainder of this section.
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left-hand side (LHS) and RHS of the equivalent transmission-
line section at and .

If the source and observation points are in the same layer
, the voltage transmission-line Green’s function

is

(30)

with , , and .
In these equations, the-functions have decreasing magnitudes
[11].

If observation and source points are in different sections
and , one has for

(31)

and for

(32)

The current transmission-line Green’s function is
analogously obtained and may be formulated by interchanging

in the preceding equations. The remaining transmission-line
Green’s functions are determined by using the equa-
tions

(33)

and

(34)

given in [3].
The authors thank J. Ritter for the FDTD reference calcula-

tions, I. D. Rullhusen for many helpful discussions, and J. R.
Shewchuk for his mesh generator.
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